Protein kinase D2 induces invasion of pancreatic cancer cells by regulating matrix metalloproteinases

نویسندگان

  • Christoph Wille
  • Conny Köhler
  • Milena Armacki
  • Arsia Jamali
  • Ulrike Gössele
  • Klaus Pfizenmaier
  • Thomas Seufferlein
  • Tim Eiseler
چکیده

Pancreatic cancer cell invasion, metastasis, and angiogenesis are major challenges for the development of novel therapeutic strategies. Protein kinase D (PKD) isoforms are involved in controlling tumor cell motility, angiogenesis, and metastasis. In particular PKD2 expression is up-regulated in pancreatic cancer, whereas PKD1 expression is lowered. We report that both kinases control pancreatic cancer cell invasive properties in an isoform-specific manner. PKD2 enhances invasion in three-dimensional extracellular matrix (3D-ECM) cultures by stimulating expression and secretion of matrix metalloproteinases 7 and 9 (MMP7/9), by which MMP7 is likely to act upstream of MMP9. Knockdown of MMP7/9 blocks PKD2-mediated invasion in 3D-ECM assays and in vivo using tumors growing on chorioallantois membranes. Furthermore, MMP9 enhances PKD2-mediated tumor angiogenesis by releasing extracellular matrix-bound vascular endothelial growth factor A, increasing its bioavailability and angiogenesis. Of interest, specific knockdown of PKD1 in PKD2-expressing pancreatic cancer cells further enhanced the invasive properties in 3D-ECM systems by generating a high-motility phenotype. Loss of PKD1 thus may be beneficial for tumor cells to enhance their matrix-invading abilities. In conclusion, we define for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion and angiogenesis, in vitro and in vivo, addressing PKD isoform specificity as a major factor for future therapeutic strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases

MicroRNAs are involved in the initiation and progression of pancreatic cancer. In this study, we showed that miR-221/222 is overexpressed in pancreatic cancer. MiR-221/222 overexpression significantly promoted pancreatic cancer cell proliferation and invasion while inhibiting apoptosis. The expression of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 was increased in miR-221/222 mimic-tra...

متن کامل

Angiogenesis, Metastasis, and the Cellular Microenvironment The N-Terminal Domain of G3BP Enhances Cell Motility and Invasion by Posttranscriptional Regulation of BART

The regulation of mRNA stability plays an important role in the control of gene expression during cell motility and invasion. We previously reported that GTPase-activating protein [Src homology 3 (SH3) domain] binding protein (G3BP), a marker of cytoplasmic stress granules that are formed in stressed cells and regulate mRNA stability, binds and degrades the mRNA of binder of Arl two (BART) that...

متن کامل

The N-terminal domain of G3BP enhances cell motility and invasion by posttranscriptional regulation of BART.

The regulation of mRNA stability plays an important role in the control of gene expression during cell motility and invasion. We previously reported that GTPase-activating protein [Src homology 3 (SH3) domain] binding protein (G3BP), a marker of cytoplasmic stress granules that are formed in stressed cells and regulate mRNA stability, binds and degrades the mRNA of binder of Arl two (BART) that...

متن کامل

Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells

Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...

متن کامل

A novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system

Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014